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, In recent years, there has been a growing interest in the development and use of
mathematical models for the simulation of fluid flow, heat transfer and combustion

processes in engineering equipment (ref. l). The equations representing the multi-

dimensional transport of mass, momenta and species are numerically solved by finite-
difference or flnlte-element techniques. However despite the multitude of differ-

encing schemes and solution algorithms, and the advancement of computing power, the

calculation of multi-dlmenstonal flows, especially three-dlmenslonal flows, remains a
mammoth task. The following discussion is concerned with the author's recent work on

the construction of accurate dtscretizatlon schemes for the partial derivatives, and

the efficient solution of the set of nonlinear algebraic equations resulting after

dtscretizatton. The present work has been Jointly supported by the Ramjet Engine
": Division of the Wright Patterson Air Force Base Ohio, and the NASA Lewis Research
- Center.

FINITE-DIFFERENCING

An efficient flnlte-dlfference scheme must represent the differential equations i ;

, to a high accuracy and must be stable. In spite of the many formally higher order
, schemes chat have been proposed, practical calculations have bee limited to the use

of simple first order schemes. The reasons for this are that either the proposed
scheme_ are unstable In general circumstances or they have limited range of formal
accuracy. The complexities of the construction of accurate schemes stem from the

following flow characteristics. !

a) High grtd Peclet number

- b) Stream lines skewed with grtd lines
LJ

c) Pressure gradients

_" d) Nonlinear source terms, also contatning derivatives.

In designing any generally useful flnlte-difference calculatlon procedure, it is it
necessary to conslaer all of the above factors caref_,Lly.

[

The present work of the author is concerned with the integration of several i
individual ideas into a general purpose algorithm. Two promising schemes that are

being considered are the influence scheme approach of Chen et al. (ref. 2) and of

Raithby et al. (ref. 3) and the compact differencing approach oF griess (ref. 4). In

the influence scheme approach, the differential operator Is analytically integrated
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" over two (or three) dimensional subdomains after lineartzing it with previous iterate

values. A profile is assumed for variations along the boundaries. This results in
_, an algebraic linear relation of the form

8 9

, @p ffi Z CI@I + _ DIO I (1)i-1 tffil

, where ¢I are neighbor values and QI represent the neighbor source terms. Ci and DI
represent coefficients. The advantages of the above approach are that it fully
considers the multl-dlmenslonal effects and is stable at high Peclet numbers.

In a compact differencing scheme the derivatives are represented to a fourth

order accuracy but wlth a tridlagonal structure. The trtdlagonal structure is

advantageous for the solution of equations and for the treatment of boundary

conditions. The compact differencing scheme however has been found in our

preliminary work to be unstable (and inaccurate) at the high Peclet numbers of

current interest. However the concept can still be used to represent the various
other derivatives that occur in the source terms and the pressure gradients, The
above two approaches are currently being pursued.

SOLUTION ALGORITHM

*' The solution of the nonlinear algebraic equations obtained after discretizatlon

is a mammoth task, The required computer times are large and convergence is not

always assured. Current work in this direction has led to a fully-coupled solution

of the nonlinear equations of momentum and continuity. The coupled set of nonlinear

equations are solved with a Newton-Raphson method and efficient sparse matrix

techniques. The turbulence equations are solved decoupled from the momentum and

continuity equations. The equations are also arranged as blocks which are then

preordered to reduce the computer storage and time. This algorithm has been extended

to reacting flows and successful calculations have been made of isothermal turbulent
flows and turbulent confined diffusion flames. The algorithm has been observed to be

rapidly convergent and insensitive to variations in grid aspect ratio, flow Reynolds
number and the number of flnlte-dlfference nodes.

Results of Some Calculations

,_ Several calculations of laminar and turbulent reclrculating flows have been made
with different finite-dlfference grids. These have been documented in detail in

Vanka (refs. 5, 6 and 7). In all the cases tested, rapid diminution of the residuals

In the equations has been observed. Calculations have been made with finite-

difference grids up to (80 x 95) size for turbulent flow in a sudden expansion. In
the present report two tables are presented which demonstrate generally the observed

rates of convergence. The first one is for a turbulent flow in a sudden expansion
for the experiments of Craig et al. (ref. 8), wlth a (80 x 95) grid. The second one

shows the rate of convergence for a confined diffusion flame for a configuration

studied by Lockwood et al. (ref. 9). The latter calculations employed a (32 x 27)
grid.
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Table I. Convergence Rate for Craig's Sudden-expansion Flow, 80 x 95 Grid

"f

Iter. 6u/Uln 6v/Uin _P/Ui2n 6k 6e

I 1.391E-I 2.904E-2 2.766E-1 5.846E-5 8.8%Z-5

5 2.879E-2 1.059E-2 1.155E-2 4.355E-5 3.3_4_-5

I0 7.300E-2 5.500E-2 1.171E-I 4.584E-5 3.336E-4

15 2.717E-3 3.224E-4 8.086E-4 3.682E-5 5.972E-5

20 1.508E-5 1.360E-5 2.597E-5 4.246E-6 1,970E-6
i

Table 2 Convergence Rate for Confined Turbulent Diffusion Flame Calculations
!i (Experiments of Lockwood et al.) with 32 x 27 grid

t

2
6k 6e 6f 6g'_ Iter. 6u/u c 6v/uc 6p/pu c

I 6.51E-I 3.25E-I 7.83E-I 1.75E-2 1.00E+O 2,oog-I 9,90E-2

5 6.75E-I 1,91E-I 5.85E-2 1.91E-4 1.31E-2 2.61E-I 3.32E-2

i0 2.60E-2 6•55E-3 5.98E-3 2.67E-5 1.53E-3 1.31E-2 3.67 E-3

15 2,48E-3 9.66E-4 3.56E-4 2.73E-6 1.13E-4 2.27E-3 4.66E-4

20 2.54E-4 1.79E-4 2.80E-5 1.39E-5 8.91E-5 2.62E-4 3.85E-5

25 4.34E-5 3.65E-5 1.54E-5 6.05E-7 4.58E-5 2.55E-5 4.95E-6
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